Temperature dependencies of radiative and nonradiative carrier lifetimes in InGaAs quantum well-dots
Nadtochiy A. M.
1,2, Melnichenko I. A.
1, Ivanov K. A.
1, Mintairov S. A.
3, Kalyuzhnyy N. A.
3, Maximov M. V.
2, Kryzhanovskaya N. V.
1, Znukov A. E.
11HSE University, St. Petersburg, Russia
2Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
3Ioffe Institute, St. Petersburg, Russia
Email: al.nadtochy@mail.ioffe.ru, imelnichenko@hse.ru, Nickk@mail.ioffe.ru
Heterostructure with InGaAs/GaAs quantum well-dots was investigated in temperature range 10-300 K using photoluminescence spectroscopy in CW mode as well with time resolution. Obtained decay times were splitted into radiative and nonradiative components of carrier lifetime. It is found that radiative lifetime demonstrates exponential growth with temperature rise, while temperature dependence of nonradiative one is much weaker. Keywords: semiconductors, quantum well-dots, photoluminescence, time resolution, lifetime, temperature dependence.
- Z. Alferov. IEEE J. Select. Top. Quant. Electron., 6 (6), 832 (2000)
- O.B. Shchekin, J. Ahn, D.G. Deppe. Electron. Lett., 38 (14), 712 (2002)
- P. Senellart, G. Solomon, A. White. Nature Nanotechnol., 12 (11), (2017)
- M. Gurioli, A. Vinattieri, M. Colocci, C. Deparis, J. Massies, G. Neu, A. Bosacchi, S. Franchi. Phys. Rev. B, 44 (7), 3115 (1991)
- D. Y. Oberli, F. Vouilloz, E. Kapon. Phys. Status Solidi A, 164 (1), 353 (1997)
- O. Nasr, N. Chauvin, M. H. H. Alouane, H. Maaref, C. Bru-Chevallier, L. Sfaxi, B. Ilahi. J. Opt., 19 (2), 025401 (2017)
- A.M. Nadtochiy, S.A. Mintairov, N.A. Kalyuzhnyy, M.V. Maximov, D.A. Sannikov, T.F. Yagafarov, A.E. Zhukov. Semiconductors, 53 (11), 1489 (2019)
- M.V. Maximov, A.M. Nadtochiy, S.A. Mintairov, N.A. Kalyuzhnyy, N.V. Kryzhanovskaya, E.I. Moiseev, N.Y. Gordeev, Y.M. Shernyakov, A.S. Payusov, F.I. Zubov, V.N. Nevedomskiy, S.S. Rouvimov, A.E. Zhukov. Appl. Sci., 10 (3), 1038 (2020)
- N.Y. Gordeev, M.V. Maximov, A.S. Payusov, A.A. Serin, Y.M. Shernyakov, S.A. Mintairov, N.A. Kalyuzhnyy, A.M. Nadtochiy, A.E. Zhukov. Semicond. Sci. Technol., 36 (1), 015008 (2021)
- E.C. Le Ru, J. Fack, R. Murray. Phys. Rev. B Condens. Matter Mater. Phys., 67 (24), 1 (2003)
- G.W.'t Hooft, M.R. Leys, H.J. Talen-v.d. Mheen. Superlat. Microstr., 1 (4), 307 (1985). DOI: 10.1016/0749-6036(85)90092-8
- J. Feldmann, G. Peter, E. O. Gobel, P. Dawson, K. Moore, C. Foxon, R. J. Elliott. Phys. Rev. Lett., 59 (20), 2337 (1987)
- G. Bacher, C. Hartmann, H. Schweizer, T. Held, G. Mahler, H. Nickel. Phys. Rev. B, 47 (15), 9545 (1993)
- B.K. Ridley. Phys. Rev. B, 41 (17), 12190 (1990)
- D.Y. Oberli, M.-A. Dupertuis, F. Reinhardt, E. Kapon. Phys. Rev. B, 59 (4), 2910 (1999)
- S. Yamauchi, A. Shikanai, I. Morohashi, S. Furue, K. Komori, T. Sugaya, T. Takagahara. J. Appl. Phys., 102 (9), 094303 (2007)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.