Near-field radiation and the effect of non-uniformity of current density distribution in AlInGaN micro-LEDs
Zakgeim A. L.
1, Ivanov A.E.1,2, Chernyakov A. E.
1, Alexanyan L.A.3, Polyakov A.Y.3
1Submicron Heterostructures for Microelectronics, Research & Engineering Center, RAS, Saint-Petersburg, Russia
2St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
3National University of Science and Technology MISiS, Moscow, Russia
Email: zakgeim@mail.ioffe.ru, chernyakov.anton@yandex.ru
The object of study in this work was the rapidly developing micro-LEDs based on AlGaInN nanoheterostructures, which have high electroluminescent characteristics and open up new application possibilities. A study of near-field radiation with high spatial resolution (mapping) revealed high current density inhomogeneity over a wide range of excitation levels, namely, the concentration of light and current in the annular region adjacent to the side surface of the mesa. Taking this effect into account, the concept of "effective" current density is introduced, and the current dependences of energy characteristics are analyzed, including optical power saturation and efficiency droop. Keywords: AlInGaN, mesostructure, micro-LED, electroluminescence, near-field radiation, quantum efficacy.
- C. Lin et al. J. Phys. Photonics, 5, 042502 (2023). DOI: 10.1088/2515-7647/acf972
- Y. Huang et al. Light: Science \& Appl., 9, 105 (2020). DOI: 10.1038/s41377-020-0341-9
- K. Bulashevich, S. Karpov. Phys. Stat. Solidi, RRL, 1-5 (2016). DOI: 10.1002/pssr.201600059
- S. Konoplev, K. Bulashevich, S. Karpov. Phys. Stat. Solidi A, 215 (10), 1700508 (2017). DOI: 10.1002/pssa.201700508
- J. Smith et al. Appl. Phys. Lett., 116, 071102 (2020). DOI: 10.1063/1.5144819
- S. Karpov. Opt. Quantum Electron, 47 (6), 1293-1303 (2015). DOI: 10.1007/s11082-014-00429
- A.L. Zakgeym, A.E. Chernyakov. Svetotekhnika, 4, 51 (2013) (in Russian)
- In-Hwan Lee, Tae-Hwan Kim, A.Y. Polyakov et al. J. Alloys and Compounds, 921, 166072 (2022). DOI: 10.1016/j.jallcom.2022.166072
- X. Guo, E.F. Schubert. Appl. Phys. Lett., 78 (21), 3337 (2001). DOI: 10.1063/1.1372359
- M. Shatalov et al. Jpn. J. Appl. Phys., 41, 5083 (2002). DOI: 10.1143/JJAP.41.5083
- A.L. Zakgeym, A.E. Ivanov, A.E. Chernyakov. Pisma v ZhTF, 47 (16), 32 (2021) (in Russian). DOI: 10.21883/PJTF.2021.16.51326.18795
- A.L. Zakgeym, G.L. Kuryshev, M.N. Mizerov etc. FTP, 44 (3), 390 (2010) (in Russian)
- A.E. Chernyakov, K.A. Bulashevich, S.Yu. Karpov, A.L. Zakgeim. Phys. Stat. Solidi A, 210 (3), 466-469 (2013). DOI: 10.1002/pssa.201200658
- V. Zabelin, D.A. Zakheim, S.A. Gurevich. IEEE J. Quantum Electron., 40 (12), 1675-1686 (2004). DOI: 10.1109/JQE.2004.837005
- D.A. Zakgeym, I.P. Smirnova, I.V. Rozhansky etc. FTP, 39 (7), 885 (2005) (in Russian)
- E.F. Shubert. Svetodiody (Fizmatlit, M., 2008) (in Russian)
- A.L. Zakgeym, A.V. Aladov, A.E. Ivanov, N.A. Talnishnykh, A.E. Chernyakov. Pisma v ZhTF, 48 (13), 33 (2022) (in Russian). DOI: 10.21883/PJTF.2022.13.52742.19182
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.