Photoluminescence of Ge/Si heterostructures with quantum dots created by epitaxy from ion-molecular beams
Smagina Zh.V. 1, Zinovyev V. A. 1, Mudryi A. V. 2, Borodavchenko O. M. 2, Bazhenov A.O. 1,3, Dvurechenskii A. V. 1, Zhivulko V. D. 2
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Scientific and Practical Materials Research Center, National Academy of Sciences of Belarus, Minsk, Belarus
3Novosibirsk State University, Novosibirsk, Russia
Email: smagina@isp.nsc.ru, zinoviev@isp.nsc.ru, a.mudryi@tut.by, borodavchenko@physics.by, abazhenov@isp.nsc.ru, dvurech@isp.nsc.ru, vad.zhiv@gmail.com

PDF
The comparative analysis of the structural and luminescent characteristics of nanostructures with quantum dots created during Ge epitaxy on Si(100) under conditions of irradiation with and without Ge+ ions with an energy of ~ 2 keV has been carried out. It was found that irradiation with Ge+ ions used in the heteroepitaxy process increases the photoluminescence intensity by 3 times compared with samples created without ion irradiation. In the irradiated samples, a shift of the maximum of the photoluminescence band of Ge Si quantum dots by ~ 25 meV to a lower-energy region was detected. Based on the analysis of the temperature dependences of photoluminescence spectra in the range of 5-300 K, the activation energies of the thermal quenching of the band associated with quantum dots are determined. Keywords: GeSi quantum dots, epitaxy, ion irradiation, photoluminescence.
  1. O.P. Pchelyakov, Yu.B. Bolkhovityanov, A.V. Dvurechensky, L.V. Sokolov, A.I. Nikiforov, A.I. Yakimov, B. Feuchtlander. FTP 34, 1281 (2000). (in Russian)
  2. A.I. Yakimov, A.V.Dvurechenskii, V.V. Kirienko, A.I. Nikiforov. Appl. Phys. Lett., 80, 4783 (2002)
  3. K. Eberl, M.O. Lipinski, Y.M. Manz, W. Winter, N.Y. Jin-Phillipp, O.G. Schmidt. Physica E, 9, 164 (2001)
  4. A.A. Tonkikh, G.E. Cirlin, V.G. Talalaev, N.D. Zakharov, P. Werner. Phys. Status Solidi A, 203, 1390 (2006)
  5. M. Brehm, M. Grydlik. Nanotechnology, 28, 392001-1 (2017)
  6. S. Pizzini, E. Leonti, S. Binetti, M. Acciarri, A. Le Donne, B. Pichaud. Sol. St. Phenomena, 273, 95 (2004)
  7. V.I. Vdovin, L.I. Fedina, A.K. Gutakovskii, A.E. Kalyadin, E.I. Shek, K.F. Shtel'makh, N.A. Sobolev. Kristallografiya 66, 597 (2021). (in Russian)
  8. N.A. Sobolev, A.E. Kalyadin, K.F. Shtelmakh, P.N. Aruev, V.V. Zabrodsky, E.I. Shek. FTP, 56, 904 (2022). (in Russian)
  9. A.E. Kalyadin, K.F. Shtelmakh, P.N. Aruev, V.V. Zabrodsky, K.V. Karabeshkin, E.I. Shek, N.A. Sobolev. FTP, 54, 580 (2020). (in Russian)
  10. S.M. Buckley, A.N. Tait, G. Moody, B. Primavera, S. Olson, J. Herman, K.L. Silverman, S.P. Rao, S.W. Nam, R.P. Mirin, J.M. Shailine. Opt. Express, 28, 16057 (2020)
  11. D.D. Berhanuddin, N.E.A. Razak, M.A. Louren\`go, B.Y. Majlisl, K.P. Homewood. Sains Malaysiana, 48, 1251 (2019)
  12. L. Ouyang, Ch. Wang, X. Feng, J. Yang, M. Zhou, F. Qiu, R. Wang, Yu. Yang. Opt. Express, 26, 15899 (2018)
  13. A. Nikolskaya, D. Korolev, A. Mikhaylov, D. Pavlov, A. Sushkov, E. Okulich, A. Chizhova, A. Konakov, P. Yunin, A. Okhapkin, S. Kraev, A. Yablonskiy, D. Yurasov, V. Zakharov, B. Andreev, D. Tetelbaum. J. Appl. Phys., 135, 215703 (2024)
  14. N.A. Sobolev, A.M. Emel'yanov, V.V. Zabrodskii, N.V. Zabrodskaya, V.L. Sukhanov, E.I. Shek. FTP, 41, 635 (2007). (in Russian)
  15. N.A. Sobolev, A.E. Kalyadin, M.V. Konovalov, P.N. Aruyev, V.V. Zabrodsky, E.I. Shek, K.F. Shtelmakh, A.N. Mikhailov, D.I. Tetelbaum. FTP 50, 241 (2016). (in Russian)
  16. V.A. Zinovyev, A.F. Zinovieva, Zh.V. Smagina, A.V. Dvurechenskii, V.I. Vdovin, A.K. Gutakovskii, L.I. Fedina, O.M. Borodavchenko, V.D. Zhivulko, A.V. Mudryi. J. Appl. Phys., 130, 153101 (2021)
  17. M. Grydlik, M.T. Lusk, F. Hackl, A. Polimeni, T.Fromherz, W. Jantsch, F. Schaffler, M. Brehm. Nano Lett., 16, 6802 (2016)
  18. M. Grydlik, F. Hackl, H. Groiss, M. Glaser, A. Halilovic, T. Fromherz, W. Jantsch, F. Schaffler, M. Brehm. ACS Photonics, 3, 298 (2016)
  19. Zh.V. Smagina, N.P. Stepina, V.A. Zinovyev, P.L. Novikov, P.A. Kuchinskaya, A.V. Dvurechenskii. Appl. Phys. Lett., 105, 153106 (2014)
  20. Y.-W. Mo, D.E. Savage, B.S. Swartzentruber, M.G. Lagally. Phys. Rev. Lett., 65, 1020 (1990)
  21. L.V. Arapkina, V.A. Yuriev. UFN, 180, 3 (2010)
  22. N.A. Sobolev, A.E. Kalyadin, E.I. Shek, K.F. Shtel'makh, V.I. Vdovin, A.K. Gutakovskii, L.I. Fedina. Phys. Status Solidi A, 214, 1700317 (2017)
  23. Yang Yu, Wang Chong, Yang Rui-Dong, Li Liang, XiongFei, BaoJi-Ming. Chin. Phys. B, 18, 4906 (2009)
  24. S. Coffa, S. Libertino, C. Spinella. Appl. Phys. Lett., 76, 321 (2000)
  25. V.A. Zinovyev, A.F. Zinovieva, P.A. Kuchinskaya, Zh.V. Smagina, V.A. Armbrister, A.V. Dvurechenskii, O.M. Borodavchenko, V.D. Zhivulko, A.V. Mudryi. Appl. Phys. Lett., 110, 102101 (2017)
  26. D.J. Lockwood, L. Tsybeskov. Phys. Status Solidi C, 8, 2870 (2011)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru