Low-signal electrical circuit of a Schottky diode according to microwave spectrometry
Reznik A.N.
1, Vostokov N. V.1
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: reznik@ipm.sci-nnov.ru, vostokov@ipm.sci-nnov.ru
Homogeneous n-Si and structured n-GaAs samples with a system of concentric barrier contacts on the surface were studied by microwave volt-impedance spectroscopy. Based on measurements in the frequency range of f=0.01-67 GHz with a lateral resolution of 20-50 microns, the spectra of the complex impedance Z(f,U) were reconstructed for the Si sample (U is the bias voltage at the contact). The electrophysical characteristics of the semiconductor such as the type, concentration and mobility of free charge carriers, specific electrical conductivity, and barrier potential difference are determined from the spectra. Excessive resistance and a capacity drop C(f-> 0)>C(f->бесконечность) of the Schottky contact were detected in the frequency range of 0.1-20 GHz. A low-signal electrical Schottky diode circuit is proposed, characterized by two time scales - low-frequency tau_l=(0.5-1)· 10-9 s and high-frequency tau_h=(3-4)· 10-11 s. In addition to the previous studies, the microwave spectrum Z(f,U=0) was measured after heating GaAs sample to a temperature of up to T=100 oC and at low frequencies of 102-106 Hz with a temperature sweep across T=77-345 K. According to the totality of all studies, the hypothesis put forward earlier is that the observed microwave effects are related to the recharge of deep states (traps) did not find any confirmation. Another interpretation is proposed, linking the effects with the peculiarities of charge carrier transport in the depleted layer of the Schottky contact. The possibilities of physical substantiation of this mechanism are discussed. Keywords: microwave range, probe station, impedance, semiconductor, barrier contact, electrophysical characteristics, carrier transport, excess resistance.
- S.M. Sze, K.K. Ng. Physics of semiconductor devices. 3rd ed. (Johen Wiley and Sons, Inc., 2007)
- D.K. Schroder. Semiconductor material and device characterization. 3rd ed. (John Wiley and Sons, Inc., 2006)
- A.N. Reznik, N.K. Vdovicheva. ZHTF, 89 (11), 1813 (2019)
- A.N. Reznik, N.V. Vostokov, N.K. Vdovicheva, V.I. Shashkin. ZHTF, 90 (11), 1944 (2020)
- A.N. Reznik, N.V. Vostokov. ZHTF, 92 (3), 492 (2022)
- A.N. Reznik, N.V. Vostokov. FTP, 57 (3), 169 (2023)
- A. Rumiantsev, R. Doerner. IEEE Microwave Mag., 14 (7), 46 (2013)
- A.Rumiantsev. On Wafer Calibration Techniques Enabling Accurate Characterization of High-Performance Silicon Devices at the mm-Wave Range and Beyond (Denmark, River Publishers, 2019)
- A. Imtiaz, T.M. Wallis, P. Kabos. IEEE Micrwave Mag., 15, 52 (2014)
- S. Berweger, T.M. Wallis, P. Kabos. IEEE Micrwave Mag., 21 (10), 36 (2020)
- Z. Chu, L. Zheng, K. Lai. Ann. Rev. Mater. Res., 50 (1), 105 (2020)
- A. Tseliov. IEEE Micrwave Mag., 21 (10), 72 (2020)
- C.T. Sah, V.G.K. Reddi. IEEE Trans. Electron Dev., 11, 345 (1964)
- E. Schibli, A.G. Milnes. Solid-State Electron., 11, 323 (1968)
- W.G. Oldham, S.S. Naik. Solid-State Electron., 15, 1085 (1972)
- M. Beguwala, C.R. Crwell. Solid-State Electron., 17, 203 (1974)
- G. Vincent, D. Bois, P. Pinard. J. Appl. Phys., 46, 5173 (1975)
- J.L. Pautrat, B. Katirciogly, N. Magnea, D. Bensahel, J.C. Pfister, L. Revoil. Solid-State Electron., 23, 1159 (1980)
- A.V. Murel, V.B. Shmagin, V.L. Kryukov, S.S. Strelchenko, E.A. Surovegina, V.I. Shashkin. FTP, 51 (11), 1538 (2017). (in Russian)
- M. Hiebel. Fundamentals of Vector Network Analysis (Rohde and Schwarz, 2007)
- A.N. Reznik. Izv. vuzov. Radiofizika, 67 (7), 607 (2024)
- L.E. Dickens. IEEE Trans. Microwave Theory Tech., 15, 101 (1967)
- V.L. Bonch-Bruevich, S.G. Kalashnikov. Physics of Semiconductors VEB. Berlin, 1982
- D.W. Tsang, S.E. Schwarz. J. Appl. Phys., 50 (5), 3459 (1979)
- M. El-Gabaly. J. Appl. Phys., 55 (2), 571 (1984)
- N.A. Mordovets, A.Ya. Shulman. ZHTF, 56 (11), 2189 (1986)
- O. Amster, F. Stanke, S. Friedman, Y. Yang, St.J. Dixon-Warren, B. Drevniok. Microelectron. Reliab., 76, 214 (2017)
- S. Berweger, G.A. MacDonald, M. Yang, K.J. Coakley, J.J. Berry, K. Zhu, F.W. DelRio, T.M. Wallis, P. Kabos. Nano Lett., 17, 1796 (2017)
- A. Buchter, J. Hoffman, A. Delvallee, E. Brinciotti, D. Hapiuk, C. Licitra, K. Louarn, A. Arnoult, G. Almuneau, F. Piquemal, M. Zeier, F. Kienberger. Rev. Sci. Instrum., 89, 023704 (2018)
- X. Guo, X. He, Z. Degnan, B.C. Donose, K. Bertling, A. Fedorov, A.D. Rakic, P. Jacobson. Appl. Phys. Lett., 119, 091101 (2021)
- H.P. Huber, I. Humer, H. Hochleitner, M. Fenner, M. Moertelmaier, C. Rankl, A. Imtiaz, T.M. Wallis, H. Tanbakuchi, P. Hinterdorfer, P. Kabos, J. Smoliner, J.J. Kopanski, F. Kienberge. J. Appl. Phys., 111, 014301 (2012)
- A.N. Reznik, E.V. Demidov. J. Appl. Phys., 113, 094501 (2013)
- A.N. Reznik, S.A. Korolyov. J. Appl. Phys., 119, 094504 (2016)
- A.N. Reznik, S.A. Korolyov, M.N. Drozdov. J. Appl. Phys., 121, 164503 (2017)
- S.A. Korolyov, A.N. Reznik. Rev. Sci. Instrum., 89, 023706 (2018)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.