Integrated sub-terahertz waveguide reconfigurable attenuator based on Ge2Sb2Te5 phase-change material
Seliverstov S. V.
1,2,3, Kozhukhovsky A. K.
1, Fudin D. G.
1, Svyatodukh S. S.
1,4, Lazarenko P. I.
5, Terekhov D. Yu.
5, Prokhodtsov A. I.
2, Nevzorov A. A.
2, Svetukhin V. V.
6, Kovalyuk V. V.
2,4, Goltsman G. N.
4,71Moscow Pedagogical State University, Moscow, Russia
2Laboratory of Photonic Gas Sensors, University of Science and Technology MISIS, 115419 Moscow, Russia
3National Research University Higher School of Economics, 109028 Moscow, Russia
4
5
6
7Telecommunications R&D Institute, MIEM, HSE University, 123458 Moscow, Russia
Email: sv.seliverstov@mpgu.su
The use of chalcogenide semiconductor compounds, in particular the Ge-Sb-Te (GST) material with phase memory, is of great importance for the further development of terahertz (THz) micro- and nanoelectronics, including the creation of spatiotemporal THz modulators for high-speed wireless communications, elements of neuromorphic photonics, metamaterials for machine learning, as well as plasmonic devices and applications that provide data storage with the possibility of their subsequent reconfiguration. In this paper, we study the change in the signal passing through the THz waveguide depending on the phase state of the GST thin film covering the waveguide. In this work, two versions of waveguides were manufactured: unclad and based on an effective medium. The phase memory material was used to control the parameters of the transmitted signal. During the experiments it was found that the value of the absorption contrast between the amorphous and crystalline states of GST exceeds 10 dB for the case when the orientation of the electric field vector of the wave propagating along the waveguide is perpendicular to the GST layer. The obtained results open up the possibility of using the developed elements as reconfigurable attenuators in the creation of integrated THz photonics devices. Keywords: chalcogenide semiconductors, phase-change material GST, terahertz photonics, high- resistivity silicon.
- T. Erpek, T.J. O'Shea, Y.E. Sagduyu, Y. Shi, T.C. Clancy. Development and Analysis of Deep Learning Architectures, 223 (2020)
- W. Kim, Y. Ahn, J. Kim, B. Shim. B. J. Commun. Networks, 25 (1), 61 (2023)
- W. Xia, S. Rangan, M. Mezzavilla, A. Lozano, G. Geraci, V. Semkin, G. Loianno. IEEE Trans. Wireless Commun., 21 (11), 9417 (2022)
- H. Ju, S. Kim, Y. Kim, B. Shim. IEEE Trans. Wireless Commun., 21 (8), 6539 (2022)
- K. Suh, S. Kim, Y. Ahn, S. Kim, H. Ju, B. Shim. IEEE Access, 10, 7384 (2022)
- X. Ma, Z. Gao, F. Gao, M. Di Renzo. IEEE J. Select. Areas Commun., 39 (8), 2388 (2021)
- A. Manoj, A.P. Kannu. IEEE Trans. Commun., 66 (11), 5678 (2018)
- Resul Das, Muhammad Inuwa. Telematics and Informatics Rep., 10, 100049 (2023)
- B.J. Shastri, A.N. Tait, T. Ferreira de Lima, W.H. Pernice, H. Bhaskaran, C.D. Wright, P.R. Prucnal. Nature Photonics, 15 (2), 102 (2021)
- D.A. Miller. Optica, 2 (8), 747 (2015)
- S. Xu, J. Wang, H. Shu, Z. Zhang, S. Yi, B. Bai, X. Wang, J. Liu, W. Zou. Light: Sci. Appl., 10 (1), 221 (2021)
- K. Makino, K. Kato, Y. Saito, P. Fons, A.V. Kolobov, J. Tominaga, T. Nakano, M. Nakajima. J. Mater. Chem. C, 7 (27), 8209 (2019)
- C. Ri os, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C.D. Wright, H. Bhaskaran, W. Pernice. Nature Photonics, 9 (11), 725 (2015)
- Y.G. Jeong, Y.M. Bahk, D.S. Kim. Adv. Optical Mater., 8 P.I.(3), 1900548 (2020)
- P.I. Lazarenko, Y.V. Vorobyov, M.E. Fedyanina, A.A. Sherchenkov, S.A. Kozyukhin, A.O. Yakubov, A.V. Kukin, Yu.S. Sybina, I.V. Sagunova. Inorganic Mater.: Appl. Res., 11, 330 (2020)
- P. Pitchappa, A. Kumar, S. Prakash, H. Jani, T. Venkatesan, R. Singh. Advanced Mater., 31 (12), 1808157 (2019)
- S. Seliverstov, S. Svyatodukh, G. Goltsman. Appl. Phys. Lett., 123 (9), 090501 (2023)
- S. Seliverstov, A. Kozhukhovsky, S. Svyatodukh, G. Goltsman. Appl. Phys. Lett., 124 (12), 121106 (2024)
- P. Lazarenko, V. Kovalyuk, P. An, A. Prokhodtsov, A. Golikov, A. Sherchenkov, S. Kozyukhin, I. Fradkin, G. Chulkova, G. Goltsman. APL Materials, 9 (12), 121104 (2021)
- E. Menshikov, P. Lazarenko, V. Kovalyuk, S. Dubkov, N. Maslova, A. Prokhodtsov, A. Vorobyov, S. Kozyukhin, G. Goltsman, I.S. Sinev. ACS Appl. Mater. Interfaces, 16 (29), 38345 (2024)
- P. Guo, A.M. Sarangan, I. Agha. Appl. Sci., 9 (3), 530 (2019)
- D. Lawson, S. Blundell, M. Ebert, O.L. Muskens, I. Zeimpekis. Optical Mater. Express, 14 (1), 22 (2023)
- W. Zhou, Z. Zhang, Q. Zhang, D. Qi, T. Xu, S. Dai, X. Shen. Micromachines, 12 (6), 616 (2021)
- C. Zhang, M. Wei, J. Zheng, S. Liu, H. Cao, Y. Huang, Y. Tan, M. Zhang, Y. Xie, Z. Yu, J. Li, H. Ye, L. Li, H. Lin, H. Li, Y. Shi, L. Liu, D. Dai. Adv. Optical Mater., 11 (8), 2202748 (2023).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.