Magnetic field characterization of physical properties of two-dimensional electron gas of nitride high electron mobility transistor heterostructures
Chumakov N.K. 1,2, Андреев A.A.1, Belov I.V. 1, Goncharov B. V. 1,2, Grischenko Yu. V. 1, Ezubchenko I. S. 1, Davydov A. B. 3, Zanaveskin M. L. 1, Kolobkova E. M. 1, Моргун Л.А.3,4, Nikolaev S. N. 1, Prikhodko K. E. 1, Chernykh I. A. 1, Shabanov S. Yu. 1, Valeyev V. G. 1,2
1National Research Center “Kurchatov Institute”, Moscow, Russia
2
3Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
4P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: chumakov_nk@nrcki.ru, andreev_aa@nrcki.ru, belov_iv@nrcki.ru, goncharov_bv@nrcki.ru, grischenko_yv@nrcki.ru, ezubchenko_is@nrcki.ru, sanyadav@yandex.ru, zanaveskin_ml@nrcki.ru, kolobkova_em@nrcki.ru, morgunla@lebedev.ru, nikolaev_sn@nrcki.ru, prikhodko_ke@nrcki.ru, chernykh_ia@nrcki.ru, shabanov_sy@nrcki.ru, valeev_vg@nrcki.ru

PDF
Analysis of the magnetic field dependence of magnetoresistance and Shubnikov-de Haas oscillations allows us to determine the concentration of charge carriers, as well as temperature and electron density dependencies of the transport and quantum mobilities of the two-dimensional electron gas in AlGaN/AlN/GaN high-electron-mobility transistor heterostructures. Unlike the standard Hall method, which requires four-contact measurements and additional technological procedures for creating test modules, the proposed technique uses two contacts and allows to compare the two-dimensional electron gas parameters in finished high-electron mobility transistors and in the initially synthesized heterostructures. Keywords: Nitride high electron mobility transistors, two-dimensional electron gas, Shubnikov-de Haas effect.
  1. A.F. Medjdoub, K. Iniewski (eds.). Gallium nitride (GaN): physics, devices, and technology (N. Y., CRC Press, 2016)
  2. D. Shoenberg. Magnetic Oscillations in Metals (Cambridge University Press, 2009)
  3. V.A. Kulbachinsky. Fizika nanosistem (M., Fizmatlit, 2022), p. 5.1.1, p. 143. (in Russian)
  4. A.V. Sakharov, D.S. Arteev, E.E. Zavarin, A.E. Nikolaev, W.V. Lundin, N.D. Prasolov, M.A. Yagovkina, A.F. Tsatsulnikov, S.D. Fedotov, E.M. Sokolov, V.N. Statsenko. Materials, 16, 4265 (2023). https://doi.org/10.3390/ma16124265
  5. L.L. Lev, I.O. Maiboroda, M.-A. Husanu, E.S. Grichuk, N.K. Chumakov, I.S. Ezubchenko, I.A. Chernykh, X. Wang, B. Tobler, T. Schmitt, M.L. Zanaveskin, V.G. Valeyev, V.N. Strocov. Nature Commun., 9 (1), 2653 (2018). https://doi.org/10.1038/s41467-018-04354-x
  6. N.K. Chumakov, A.A. Andreev, I.V. Belov, A.B. Davydov, I.S. Ezubchenko, L.L. Lev, L.A. Morgun, S.N. Nikolaev, I.A. Chernykh, S.Yu. Shabanov, V.N. Strocov, V.G. Valeyev. JETP Letters, 119 (8), 604 (2024). https://doi.org/10.1134/S0021364024600769
  7. A. Fowler, F. Fang, W. Howard, P.J. Stiles. Phys. Rev. Lett., 16 (20), 901 (1966). https://doi:10.1103/physrevlett.16.901

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru