Resonant terahertz response of a slot diode with a two-dimensional electron channel
Popov V.V.1, Tsymbalov G.M.1, Shur M.S.2, Knap W.2,3
1Institute of Radio Engineering and Electronics (Saratov Division), Russian Academy of Sciences, Saratov, Russia
2Department of Electrical, Computer, and System Engineering and RPI/IBM Center for Broadband Data Transfer, CII, Rensselaer Polytechnic Institute, Troy, New York,
3GES CNRS-Universite Montpellier2 UMR, Montpellier, France
Поступила в редакцию: 1 июня 2004 г.
Выставление онлайн: 20 декабря 2004 г.
Terahertz response of a slot diode with two-dimensional electron channel is calculated on the basis of the first principles of electromagnetism. It is shown that all characteristic electromagnetic lengths (scattering, absorption and extinction lengths) as well as the impedance of the diode exhibit resonances at the frequencies of plasmon excitation in the channel. The fundamental resonance behaves similar to the current resonance in a RLC circuit. A conclusion is drawn that a slot diode with two-dimensional electron channel provides a resonant circuit at terahertz frequencies that couples effectively to external electromagnetic radiation with loaded Q-factor exceeding unity even at room temperature. The diode resistance may be measured from contactless measurements of the characteristic electromagnetic lengths of the diode.
- M.S. Shur, V. Ryzhii. In.: Terahertz Sources and Systems, ed. by R. Miles, P. Harrisson and D. Lippens (Dordrecht, Kluwer, 2001) p. 169
- M. Dyakonov, M. Shur. Phys. Rev. Lett., 71, 2465 (1993)
- M. Dyakonov, M. Shur. IEEE Trans. Electron. Dev., 43, 380 (1996)
- M.S. Shur, J.-Q. Lu. IEEE Trans. Microwave Theory and Techniques, 48, 750 (2000)
- W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. Lu, R. Gaska, M.S. Shur, G. Simin, X. Nu, M. Asif Khan, S.A. Saylor, L.C. Brunel. J. Appl. Phys., 91, 9346 (2002)
- W. Knap, Y. Deng, S. Rumyantsev, J.-Q. Lu, M.S. Shur, C.A. Saylor, L.C. Brunel. Appl. Phys. Lett., 80, 3433 (2002)
- X.G. Peralta, S.G. Allen, M.C. Wanke, N.E. Harff, J.A. Simmons, M.P. Lilly, J.L. Reno, P.J. Burke, J.P. Eisenstein. Appl. Phys. Lett., 81, 1627 (2002)
- W. Knap, Y. Deng, S. Rumyantsev, M.S. Shur. Appl. Phys. Lett., 81, 4637 (2002)
- V.V. Popov, O.V. Polischuk, T.V. Teperik, X.G. Peralta, S.J. Allen, N.J.M. Horing, M.C. Wanke. J. Appl. Phys., 94, 3556 (2003)
- V.V. Popov, T.V. Teperik, O.V. Polischuk, X.G. Peralta, S.L. Allen, N.J.M. Horing, M.C. Wanke. Phys. Solid State, 46, 153 (2004)
- Y. Deng, R. Kersting, J. Xu, R. Ascazubi, Xi-C. Zhang, M.S. Shur, R. Gaska, G.S. Simin, M. Asif Khan, V. Ryzhii. Appl. Phys. Lett., 84, 70 (2004)
- W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V.V. Popov, M.S. Shur. Appl. Phys. Lett., 84, 2331 (2004)
- A.V. Antonov, V.I. Gavrilenko, E.V. Demidov, S.V. Morosov, A.A. Dubinov, J. Lusakowski, W. Knap, N. Dyakonova, E. Kaminska, A. Piotrowska, K. Goloszewska, M.S. Shur. Phys. Solid State, 46, 146 (2004)
- P.J. Burke, I.B. Spielman, J.P. Eisenstein, L.N. Pfeiffer, K.W. West. Appl. Phys. Lett., 76, 745 (2000)
- V. Ryzhii, A. Satou, M.S. Shur. J. Appl. Phys., 93, 10 041 (2003)
- R.G. Newton. Scattering theory of waves and particles (N. Y., McGraw-Hill, 1966)
- J. Alsmeier, E. Batke, J.P. Kotthaus. Phys. Rev. B, 40, 12 574 (1989)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.