DNA detection by THz pumping
Chernev A.L.1, Bagraev N.T.2, Klyachkin L.E.2, Emelyanov A.K.1, Dubina M.V.1
1St. Petersburg Academic University Nanotechnology Research and Education Centre RAS, St. Petersburg, Russia
2Ioffe Physicotechnical Institute, Russian Academy of Sciences, St. Petersburg, Russia
Поступила в редакцию: 29 декабря 2014 г.
Выставление онлайн: 19 июня 2015 г.
DNA semiconductor detection and sequencing is considered to be the most promising approach for future discoveries in genome and proteome research which is dramatically dependent on the challenges faced by semiconductor nanotechnologies. DNA pH-sensing with ion-sensitive field effect transistor (ISFET) is well-known to be a successfully applied electronic platform for genetic research. However this method lacks fundamentally in chemical specificity. Here we develop the first ever silicon nanosandwich pump device, which provides both the excitation of DNA fragments' self-resonant modes and the feedback for current-voltage measurements at room temperature. This device allows direct detection of single-stranded label-free oligonucleotides by measuring their THz frequency response in aqueous solution. These results provide a new insight into the nanobioelectronics for the future real-time technologies of direct gene observations.
- R. Higuchi, C. Fockler, G. Dollinger, R. Watson. Nature Biotechnology, 11, 1026 (1993)
- M.K. Udvardi, T. Czechowski, W.R. Scheible. The Plant Cell, 20, 1736 (2008)
- H.D. VanGuilder, K.E. Vrana, W.M. Freeman. BioTechniques, 44, 619 (2008)
- J. Liu, C. Liu, W. He. Current Organic Chem., 17, 564 (2013)
- J. Eid, A. Fehr, J. Gray et al. Science, 323, 133 (2009)
- J.M. Rothberg, W. Hinz, T.M. Rearick et al. Nature, 475, 348 (2011)
- C. Toumazou, L.M. Shepherd, S.C. Reed et al. Nat. Methods, 10, 641 (2013)
- R.E. Webb. Electron. Engin., 37, 803 (1965)
- I. Lundstrom, M.S. Shivaraman, C.S. Svenson, L. Lundkvist. Appl. Phys. Let., 26, 55 (1975)
- P. Bergveld. Sensors Actuators B, 88, 1 (2003)
- C.S. Lee, S.K. Kim, M. Kim. Sensors, 9, 7111 (2009)
- N.T. Bagraev, L.E. Klyachkin, A.A. Kudryavtsev, A.M. Malyarenko, V.V. Romanov. In: Superconductor, ed. by A. Luiz, SCIYO (2010) p. 69
- G.J. Thomas jr. Ann. Rev. Biophys. Biomol. Struct., 28, 1 (1999)
- A. Barhoumi, D. Zhang, F. Tam, N.G. Halas. J. Am. Chem. Soc., 130, 5523 (2008)
- B.M. Fischer, M. Walther, P. Jepsen. Phys. Med. Biol., 47, 3807 (2002)
- M.D. Blumenthal, B. Kaestner, L. Li, S. Giblin, T.J.B.M. Janssen, M. Pepper, D. Anderson, G. Jones, D.A. Ritchie. Nature Phys., 3, 343 (2007)
- P. Recher, Y.V. Nazarov, L.P. Kouwenhoven. Phys. Rev. Lett., 104, 156 802 (2010)
- B.D. Josephson. Rev. Mod. Phys., 46, 251 (1974)
- M.Z. Hasan, C.L. Kane. Rev. Mod. Phys., 82, 3045 (2010)
- N.T. Bagraev, V.K. Ivanov, L.E. Klyachkin, I.A. Shelykh. Phys. Rev. B, 70, 155 315 (2004)
- N.T. Bagraev, A. Bouravleuv, W. Gehlhoff, L. Klyachkin, A. Malyarenko, S. Rykov. Def. Dif. Forum, 194, 673 (2001)
- N.T. Bagraev, N.G. Galkin, W. Gehlhoff, L.E. Klyachkin, A.M. Malyarenko. J. Phys.: Cond. Matter, 20, 164 202 (2008)
- N.T. Bagraev, A.D. Bouravleuv, L.E. Klyachkin, A.M. Malyarenko, W. Gehlhoff, V.K. Ivanov, I.A. Shelykh. Semiconductors, 36, 439 (2002)
- N.T. Bagraev, A.D. Bouravleuv, L.E. Klyachkin, A.M. Malyarenko, W. Gehlhoff, Yu.I. Romanov, S.A. Rykov. Semiconductors, 39, 716 (2005)
- N.T. Bagraev, W. Gehlhoff, L.E. Klyachkin, A.A. Kudryavtsev, A.M. Malyarenko, G.A. Oganesyan, D.S. Poloskin, V.V. Romanov. Physica C, 219, 437 (2006)
- N.T. Bagraev, V.A. Mashkov, E.Yu. Danilovsky, W. Gehlhoff, D.S. Gets, L.E. Klyachkin, A.A. Kudryavtsev, R.V. Kuzmin, A.M. Malyarenko, V.V. Romanov. Appl. Magn. Reson., 39, 113 (2010)
- N.T. Bagraev, E.Yu. Danilovskii, L.E. Klyachkin, A.M. Malyarenko, V.A. Mashkov. Semiconductors, 46, 75 (2012)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.