Вышедшие номера
Влияние внешних параметров на процесс переключения при задержанной ионизации в кремниевой p+-n-n+-структуре
Кардо-Сысоев А.Ф.1, Черенёв М.Н.1,2, Люблинский А.Г.1, Смирнова И.А.1, Юсупова Ш.А.1, Белякова Е.И.1, Векслер М.И.1
1Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
2Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина), Санкт-Петербург, Россия
Email: mncherenev@mail.ioffe.ru
Поступила в редакцию: 24 июля 2024 г.
В окончательной редакции: 14 августа 2024 г.
Принята к печати: 14 августа 2024 г.
Выставление онлайн: 8 октября 2024 г.

Разработана новая методика измерения быстропротекающих процессов в полупроводниковых диодах, переключающихся в проводящее состояние путем подачи высоковольтного быстронарастающего импульса, при высоких значениях приложенного постоянного напряжения. Исследованы процессы задержанной ударной ионизации в структурах p+-n-n+-типа с толщинами базовых n-областей порядка 100 и 410 мкм. Экспериментально показано улучшение характеристик переключения при увеличении как постоянной составляющей обратного смещения, так и скорости нарастания приложенного импульса напряжения для структур с толстой базой. Достигнута скорость переключения одиночной структуры 42.7 кВ/нс. Ключевые слова: диодный лавинный обостритель (ДЛО), задержанная ударная ионизация, субнаносекундные импульсы напряжения, силовые диоды.
  1. A.F. Kardo-Sysoev. In: Ultra-Wideband Radar Technology, ed. by J.D. Taylor (CRC Press, Boca Raton--London--N. Y.--Washington, 2001) p. 214
  2. A.S. Kesar. IEEE Trans. Antennas Propag., 59, 149 (2011). DOI: 10.1109/tap.2010.2090486
  3. M. Scapinello, L.M. Martini, G. Dilecce, P. Tosi. J. Phys. D: Appl. Phys., 49 (7), 75602 (2016). DOI: 10.1088/0022-3727/49/7/075602
  4. E. Delikonstantis, M. Scapinello, G.D. Stefanidis. Fuel Process. Technol., 176, 33 (2018). DOI: 10.1016/j.fuproc.2018.03.011
  5. E. Delikonstantis, M. Scapinello, O. Van Geenhoven, G.D. Stefanidis. Chem. Eng. J., 380, 122477 (2020). DOI: 10.1016/j.cej.2019.122477
  6. M. Breton, L.M. Mir. Bioelectromagnetics, 33 (2), 106 (2012). DOI: 10.1002/bem.20692
  7. M. Islam, C.L. Min, N.J. Shoumy, M.S. Ali, S. Khatun, M.S.A. Karim, B.S. Bari. J. Phys.: Conf. Ser., 1529 (5), 052066 (2020). DOI: 10.1088/1742-6596/1529/5/052066
  8. S.M. Bardet, L. Carr, M. Soueid, D. Arnaud-Cormos, P. Leveque, R.P. O'Connor. Sci. Rep., 6 (7252), 34443 (2016). DOI: 10.1038/srep34443
  9. M. Balmelli, R. Farber, L. Merotto, P. Soltic, D. Bleiner, C.M. Franck, J. Biela. IEEE Access, 9, 100050 (2021). DOI: 10.1109/ACCESS.2021.3095664
  10. S. Stepanyan, J. Hayashi, A. Salmon, G.D. Stancu, C.O. Laux. Plasma Sources Sci. Technol., 26 (4), 04LT01 (2017). DOI: 10.1088/1361-6595/aa5a2b
  11. X. Li, J. Chu, P. Jia, Y. Li, B. Wang, L. Dong. IEEE Trans. Plasma Sci., 46 (3), 583 (2018). DOI: 10.1109/TPS.2018.2797954
  12. M.G. De Giorgi, A. Sciolti, S. Campilongo, E. Pescini, A. Ficarella, L.M. Martini, P. Tosi, G. Dilecce. Energy Procedia, 82 (2015), 410 (2015). DOI: 10.1016/j.egypro.2015.11.825
  13. I.V. Grekhov, A.F. Kardo-Sysoev. Sov. Tech. Phys. Lett., 5 (8), 395 (1979)
  14. I.V. Grekhov, A.F. Kardo-Sysoev, L.S. Kostina, S.V. Shenderei. Electron. Lett., 17 (12), 422 (1981). DOI: 10.1049/el:19810293
  15. D. Benzel, M. Pocha. Rev. Sci. Instrum., 56, 1456 (1985). DOI: 10.1063/1.1138504
  16. А.Ф. Кардо-Сысоев, М.В. Попова. ФТП, 30 (5), 803 (1996)
  17. M. Levinshtein, J. Kostamovaara, S. Vainshtein. Breakdown Phenomena in Semiconductors and Semiconductor Devices (Word Sci., 2005). ISBN: 981-256-395-4
  18. P. Rodin, A. Rodina, I. Grekhov. J. Appl. Phys., 98, 094506 (2005). DOI: 10.1063/1.2125118
  19. A.S. Kyuregyan. Techn. Phys. Lett., 31 (12), 1043 (2005). DOI: 10.1134/1.2150893
  20. P. Rodin, U. Ebert, A. Minarsky, I. Grekhov. J. Appl. Phys., 102 (3), 034508 (2007). DOI: 10.1063/1.2767378
  21. L.M. Merensky, A.F. Kardo-Sysoev, D. Shmilovitz, A.M. Kesar. IEEE Trans. Plasma Sci., 42 (12), 4015 (2014). DOI: 10.1109/tps.2014.2366551
  22. V.I. Brylevskiy, I.A. Smirnova, A.V. Rozhkov, P.N. Brunkov, P.B. Rodin, I.V. Grekov. IEEE Trans. Plasma Sci., 44|,(10), 1941 (2016). DOI: 10.1109/TPS.2016.2561404
  23. A.S. Kesar, A. Raizman, G. Atar, Sh. Zoran, S. Gleizer, Y. Krasik, D. Cohen-Elias. Appl. Phys. Lett., 117, 013501 (2020). DOI: 10.1063/5.0016228
  24. V.I. Brylevskiy, I.A. Smirnova, N.I. Podolska, Yu.A. Zharova, P.B. Rodin, I.V. Grekhov. IEEE Trans. Plasma Sci., 47 (1), 994 (2018). DOI: 10.1109/TPS.2018.2875423
  25. M. Ivanov, V. Brylevskiy, I. Smirnova, P. Rodin. J. Appl. Phys., 131, 014502 (2022). DOI: 10.1063/5.0077092

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.